

Increasing the Electric Drive Range of EVs and PHEVs through New Concepts of Thermal Conditioning for ePT Systems and Cabin

W. Ferraris ^(*1), M. Casella ^(*1), A.M. Merlo ^(*1), A. Rinaldi ^(*1), M.M. Rostagno ^(*1), R. Seccardini ^(*1), A. Caldevilla ^(*2), A. Savi ^(*3), A. Sciarretta ^(*4). ^(*1) = CRF ^(*2) = DNDE ^(*3) = DNTS ^(*4) = IEPEN

- BEVs Range Vs. Ambient Conditions
- OPTEMUS Project overview
- CRU and integrated Thermal Management systems
- Functionalities and control logics
- Preconditioning Function
- Eco-Routing
- Holistic and Predictive control
- Expected results
- Wrap Up

How far can you go with BEVs?

Cabin and Batteries thermal management are main reasons to reduced EV range

Optemus Project Overview

Holistic approach to reduce thermal management energy consumption for EVs

STANDARD LAYOUT

- ···· Refrigerant Loop
- Hot Side Coolant Loop & Heat Exchanger
- Cold Side Coolant Loop & Heat Exchanger
- Hot/Cold Pipes and Heat Exchanger

- 3 Coolant loops
- 2 PTC heaters
- 3 Heat Exchanger on the front end
- 2 TXV
- 2 Coolant Valves (3 ways)

OPTEMUS LAYOUT

- •••• Refrigerant Loop
- Hot Side Coolant Loop & Heat Exchanger
- Cold Side Coolant Loop & Heat Exchanger
- Hot/Cold Pipes and Heat Exchanger

1 Coolant Loop
No PTC heaters
1 Heat Exchanger on the front end
1 TXV

6 Coolant Valves (3 & 2 ways)

Compact Refrigeration Unit

The **CRU** unit has been designed according with the **heat exchanger and compressor CAD files**. Also the **bracket** has been realized for engine bay fitting and vibration management.

Main Characteristics:

- Short refrigerant and coolant pipes
- Damper holding solution

- Compact design with Plug and Play approach (size comparable with 105AH Battery)
- Oil and refrigerant (R290) charge optimization
- Noise reduction due to compressor integrated and sealed
- Well established thermal management control for water circuit

R290

R290

The **CRU** has to manage the cooling and heating function for both **HVAC** and **Battery System**. **OHE** will manage the heat rejection and the heat recovery from ambient.

Demo Car Integration

Control Strategy

Thermal Management Architecture Functionalities

- 2 Main States (Cooling & Heating) and 8 different functions.
- The States and functions transitions will be managed by **PI control strategies** based on defined errors.
- The Obj temperatures deviations drive the actuators positions in order to reach the desired temperatures.
- The valves are the main actors to provide hot or cold coolant to the right heat exchangers.

Thermal Management Architecture Benefits

Gain Potential (Simulated by virtual (virtual)

4 fixed inputs:

- AHX air mass flow = 2000 kg/h
- Heater air mass flow = 250 kg/h
- AHX pump speed = 100%
- Heater pump speed = 100%

1 controlled input:

CRU compressor speed [rpm]

5 power demands:

- AHX fan [W]
- Heater fan [W]
- CRU compressor[W]
- AHX pump [W]
- Heater Pump [W]

Energy Consumption: 1419 Wh

-15% w.r.t baseline

Preconditioning Strategies: HMI User & Eco Routing

Eco-routing

Current navigation system suggests only the shortest route and the fastest route.

The "eco-routing" navigation system suggests the most energy efficient route.

The Energy consumption model takes into account several parameters:

- Average traffic speed
- Acceleration
- Road grade

- Critical points infrastructure
- Vehicle parameters
- Ambient Temperature

Example of a selected Origin/Destination

Energy consumption average measured performance [Wh]

Thermal Management for HV/HEV 13-15 February 2018, Berlin (DE)

Thermal Management Predictive Control

- Thermal Management Control Function will be managed with an HOLISTIC approach
- Predictive functionalities will be implemented using information from Eco-routing and Eco-driving function

OPTEMUS Prj Expected Results

Thermal Management for HV/HEV 13-15 February 2018, Berlin (DE)

Range extension is one of the most challenging goals for BEV vehicles

Thermal Management Issues have a big impact and a large room for improvements

Integrated design approach allows to save components and optimize the lay-out

Holistic control is the key factor for range extension benefits achievement

Preconditioning and predictive control functions can help the energy efficiency, reducing the cabin and batteries thermal management impact on the vehicle autonomy

Thank you!

Walter FERRARIS EMEA - Engine Systems Tel: +39 01100 42678 email: walter.ferraris@crf.it

Centro Ricerche Fiat S.C.p.A. c.so Settembrini, 40 - 10135 TORINO, Italy