ASSESSMENT OF RECENT CHANGES IN RDE LEGISLATION

guide for independent testing from surveillance to compliance | Ligterink, N.E. (Norbert)

innovation for life

TNO innovation for life

GETTING FAMILIAR WITH RDE *TNO RESEARCH & DEVELOPMENT PORTFOLIO*

- > 2011-2015: (from the archives)
 - > on-road testing for emission factors and assessments
 - Ideveloping RDE trips and assisting the Netherlands in RDE-LDV group
- > 2016: (all published: you can read about it)
 - > testing Euro-6 passenger cars in RDE and more (TNO 2016 report R11177)
 - > strength and weaknesses of RDE (TNO 2016 report 11227)
- > 2017: (this talk, reports and papers due in November)
 - Understanding on-road variations in the RDE test
 - Testing Euro-6 light commercial vehicles in RDE and normal use
 - Review of the RDE evaluation methods on the basis of stakeholder data
 - Robust statistical methods in in-service conformity
 - Developing measurement equipment for monitoring (enhancing SEMS)

ALL TRIPS WITH EURO-6 LCVS IN 2017

Average speed [km/h]

OBSERVATIONS FROM THE LCV TESTING

Large variations in the Euro-6 NOx emissions results:

- > differences between different vehicle models (factor 10)
- > differences between driving styles and payloads (factor 5)
- > differences between different usages (RDE, package delivery, motorway)

RDE testing not trivial:

- Many invalid tests (*RDE range: factor 2*)
- > Optimizing routes and instructions is essential
- Payload adds to the complexity of testing LCVs in RDE

Major improvement of Euro-6 over Euro-5 vans:

- Dutch emission factors ~60% down from previous estimates based on Euro-5
- > weighing by sales numbers essential for the correct average

RDE EVALUATION METHODS *"CORRECTING FOR DEVIATIONS"*

Our working hypothesis

Evaluation methods are intended to correct for deviations in test executions.

In particular aspects related to velocity and CO_2 emissions, since these aspects are the basis of the evaluation methods.

Varying conditions, vehicles, and text executions at the same time show a large uncorrelated scatter of the corrections.

randomization or some systematics?

DRIVING BEHAVIOUR AND PAYLOAD SPECIAL TESTS WITH FOCUS ON EVALUATION METHODS

keeping the same:

- > vehicle
- weather (i.e. tested in one period)
- route (fixed RDE route)
- > conditioning (one RDE test after another)
- > driver
- variation in: (relevant for evaluation methods)
 - > driving instructions:
 - gear shifting
 - stopping distance and time
 - headway
 - payload

	malise
	ginnolmisu
maldrivit	antio
traffic: nº	

RDE RANGE IN THE FULL RANGE OF DRIVING BEHAVIOUR AND PAYLOAD

RDE compliant?													Not
									1% to				sufficient
							skewed	Urban	much stop				dynamics
							road type	part too	time in				on
(N1 Class II)	OK		Urban part too agressive		OK	fractions	agressive	urban part		OK		highway	
Trip	1	2	3	4	5	6	7	8	9	10	11	12	13
Style	normal	normal	sport	sport	sport	normal	eco	sport	sport	sport	normal	eco	eco
Weight [kg]	1482	1482	1940	1940	1960	1820	1660	1940	1940	1960	1820	1680	1700
Average velocity													
[km/h]	47.3	45.4	38.5	38.5	39.6	49.6	46.5	44.2	44	48.8	49.4	44.9	46.3
Average velocity													
(v>0) [km/h]	52.8	54.3	52.1	55.9	56.5	57.9	53.1	57.5	56.1	58.4	57.6	53.2	52.3
CO2 [g/km]	140	157	175	179	194	142	122	180	175	166	140	127	116
EMROAD CO2	159	178				159				199	152	145	
NOx [mg/km]	280	392	579	623	908	452	281	734	557	513	367	291	172
EMROAD NOx	174	240			×	291				329	235	187	
NOx/CO2 [g/kg]													
per second	1.8	2.3	3.2	3	4.7	3.1	2.2	3.5	2.8	2.7	2.3	2.3	2.4
NOx/CO2 [g/kg]													
from EMROAD													
total	2	2.5	\mathbf{X}			3.1				3	2.6	2.3	
Urb CO2 [g/km]	159	173	f	actor	2	160	fa	ctor 5		183	151	137	
Urb EMROAD CO2	154	170				159				185	151	138	
Urb NOx [mg/km]	302	462	IN F	RDE tr	rips 🗌	504	n a	all trip	S	425	345	311	
Urb EMROAD NOx	162	269				346				304	235	203	
Urb NOx/CO2													
[g/kg] from													
EMROAD Seesment of	recent <mark>2</mark> hange	s in R25	ation			3.3				2.5	2.6	2.3	

THE EFFECT OF EMROAD* (MAW) ON VALID TRIPS WITH THE SAME VEHICLE SYSTEMATIC!

there is no "reference", for which there is no correction

8 | assesment of recent changes in RDE legislation

* only two valid tests for CLEAR (PB), no analysis possible

THE PROBLEM WITH TESTING VANS WITH PAYLOAD UP TO 90% MAXIMAL WEIGHT

SAME MAKE AND MODEL CLASS III VAN DEVELOPMENT IN EMISSION PERFORMANCE

also well-performing vehicles show variations in emissions

TNO innovation for life

ASSESSING COLD START AND CONTROL STUDY OF RESIDUALS

"DETECTING DIFFERENCES"

THE PROBLEM WITH DRIVERS "IT IS PERSONAL"

time spend at given speed and throttle position

EUROPEAN NATURALISTIC DRIVING UDRIVE V*A_{POS}[95%] <u>PER DRIVER (NOT JUST TRIPS!</u>)

LIST OF ASSESSED METHODS IN CONTRACT FOR THE COMMISSION

	Trip validity on RDE BCS	Trip validity on evaluation method BCS	Corrected emissions
Raw emissions, no BCS	NO	NO	NO
Raw emissions with test validity	YES	NO	NO
PB	YES	YES	YES
MAW + MAW looped	YES	YES	YES
NO _X /CO ₂	YES	NO	YES
NO _X /CO ₂ MAW (ACEA)	YES	YES	YES
Raw emisisons MAW (T&E)	YES	YES	NO

INVALID TESTS MOST IMPORTANT ISSUE

BOUNDARY CONDITIONS (BCS) OF THE EVALUATION METHODS (NOT DYNAMICS)

- > Many invalid trips: $252 \rightarrow 168 \rightarrow 75$ and 34
- BCS of evaluation methods have a greater impact than general RDE BCS → different principles of test normality
- For MAW, motorway share (not enough windows) and the urban part of the CO₂ band (positive and negative) are important factors for invalidity on MAW test normality. For PB, the power bins P1+2, P3 and P5 are important factors.

Venn diagram without order: all BCS checked independently

EFFECTIVENESS: EMISSION RESULTS

Ratio of the average variation, or standard deviation, per vehicle in the evaluation result and the variation in the raw result:

- It was shown that none of the methods show a high correlation between raw results and evaluation results. (NOx/CO2 urban shows the most correlation: higher CO₂ gives a correction downward.)
- MAW even showed a slight increase in scatter on top of the variation observed in the raw test results with individual vehicles
- Some systematic effects per vehicle might exist in PB

innovation for life

STATISTICAL PROCEDURE *FOR IN-SERVICE CONFORMITY*

different distributions

For example:

ISO statistics makes 25% faulty vehicles compliant with a minimal risk of incompliance.

Fail with two times a +30% outlier (in 10 tests maximal) ensures that the emission levels remain within bounds, for these 25% faulty vehicle.

simply said: in the worst case, 75% below 1 and 25% below 1.3 keeps the results still below 1.075 times the limit.

MEET THE CLEANEST CAR, SO FAR ... *STILL A REASON TO DRIVE DECISIVELY ECO*

UNDERSTANDING ON-ROAD TEST RESULTS REPRODUCIBILITY

> What if an (In-Service Conformity) test shows unexpected results?

- > Can this result be reproduced?
- > If it cannot be reproduced, will it be ignored?

It is essential to understand the cause of on-road variations

- > accurate signal for velocity, improving flow measurements (inlet?)
- > development of measurement equipment: (ongoing)
 - > road slope (altitude variations affect engine loads significantly)
 - > wind (causing air drag variations up to 100%)
 - > road surface and dynamic rolling resistance (unknown effects)
 - > battery, auxiliaries, and hybridization require new meters

Monitoring is essential to determine true risk/rate of high emissions

- In the "RDE era", emissions will be more erratic and variations are larger
- > new ways of thinking and presenting results (no "one-number" nonsense)

THANK YOU FOR YOUR ATTENTION

innovation for life

norbert.ligterink@tno.nl