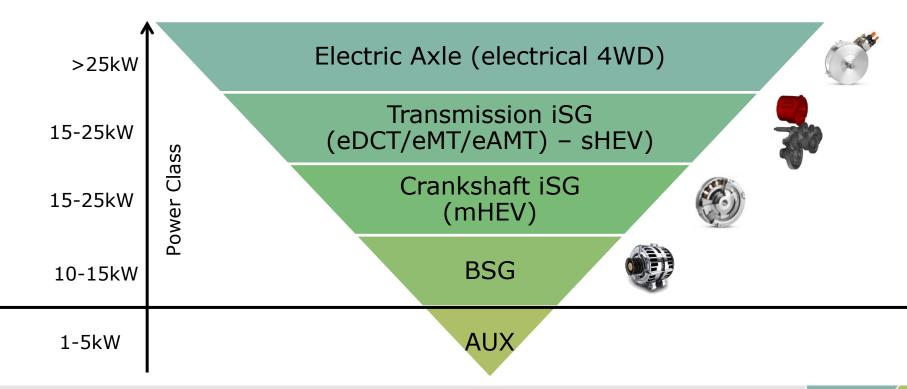
Semiconductor Solutions for 48V High Power Inverter

Alternatives to Bare Die Modules

Eric Schütte Infineon Technologies AG

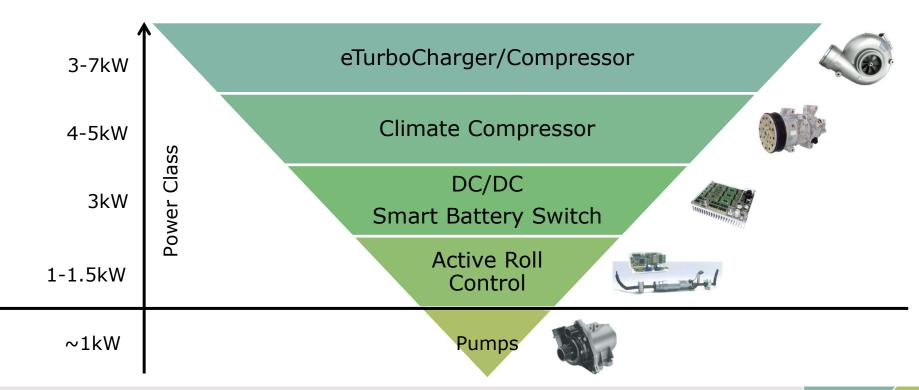
Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook


Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook

High Power Inverters µHybridization

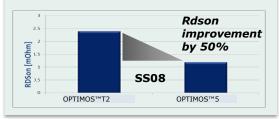


> Electrification and Hybridization

High Power Inverters Auxiliary Drives

Copyright © Infineon Technologies AG 2017. All rights reserved.

Agenda


1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook

Leadless MOSFETs OptiMOS[™]5 80V/100V Trench Technology

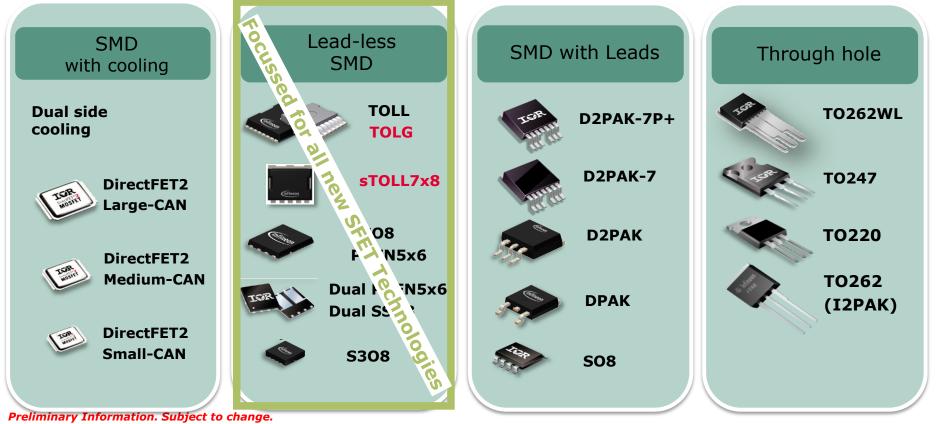
Best in Class Rdson

- Leading R_{DSon} performance down to 1.2mOhm (released)
- Low conduction losses
- Area reduction facilitates smaller packages

1. Applicable to normal level 2017-09-18 restricted

EMC Improvement

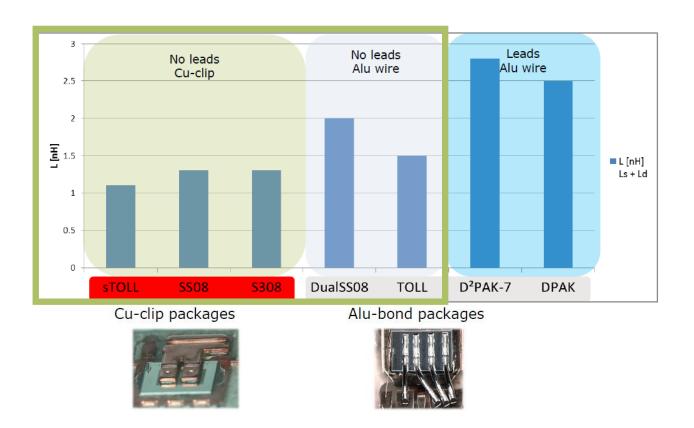
- Reduced Ciss & Coss
- Improved switching behavior
- Improved EMC behavior due to technology improvements


Innovative package interconnect

- New top-side copper-clip contact technology
- Lower thermal resistance
- Lower package resistance
- Smaller package e.g. Achieved a footprint 1/6th the size of a DPAK for equivalent R_{DSon}

Back End Technology Portfolio and Roadmap

sTOLL registered at JEDEC


2017-10-12

Copyright © Infineon Technologies AG 2017. All rights reserved.

Leadless MOSFETs Interconnect Technology

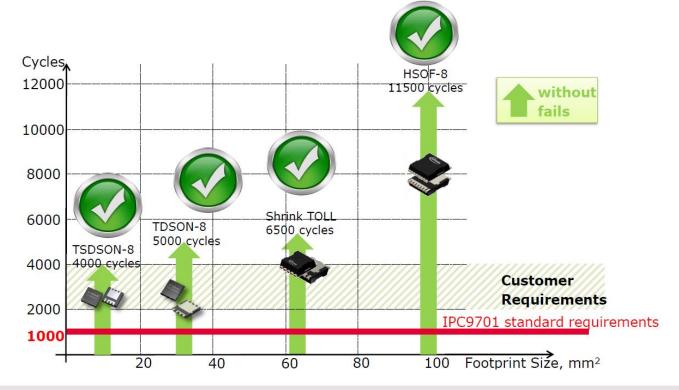
- Cu-Clip Packages

 offer Lowest Package
 Resistance &
 Inductance
- > Best EMI Behavior
- Lowest Voltage
 Overshoots

Robustness of Leadless Packages IOL Test

IOL=**I**ntermittent **O**perating Livetime ("Power Cycling")

Testing conditions acc. AEC Q101			
Start Temperature	20°C		
Temperature rise during cycles	ΔΤ=100Κ		
Current	Applied to the bodydiode for a few seconds to heat up the chip to the target temperature		
Number of tested devices	77		
Number of power cycles	15.000 with no failures		
Premisses			
 cooling down the device needs approximately 3 minutes a parameter drift of 20% is considered as failure 			


Measured parameters

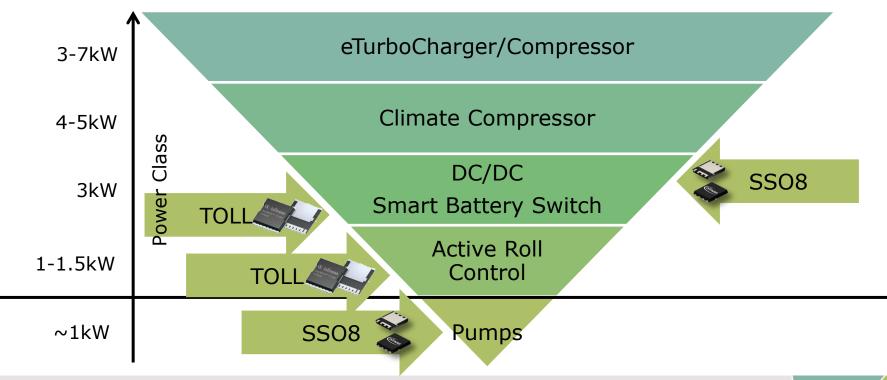
All standard parameters according to datasheet: Leakage currents, V_{BRDSS} , V_{GSth} , $R_{DS(on)}$ etc.

Robustness of Leadless Packages Beyond IPC-9701

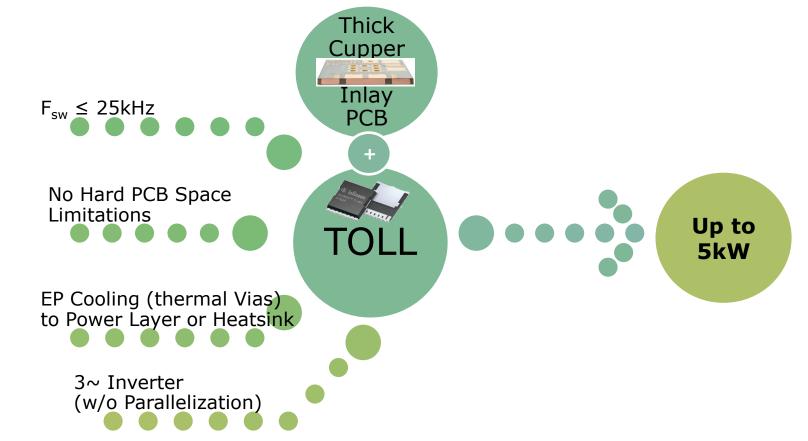
> Enhanced TCoB Performance

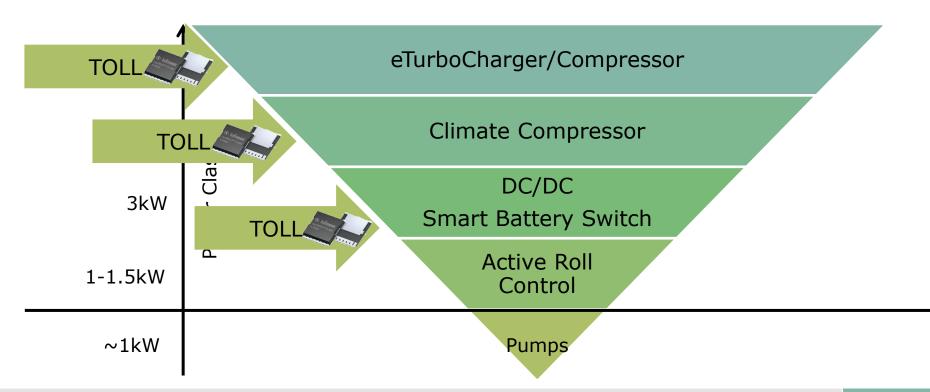
80V & 100V MOSFET Portfolio with Leadless Packages

	PQFN 5x6 (TDSON)	PQFN5x6 (TDSON)	SSO8 (TDSON)	SSO8 (TDSON)	TOLL (H-SOF)	TOLL (H-SOF)	DirectFET2 (WDSON)
							TSR
Foot-Print	5x6mm	5x6mm	5x6mm	5x6mm	10x12mm	10x12mm	7x9mm ²
I-Package	100A	100A	100A	100A	300A	300A	88A
Released	Gen 10.7 75V	Gen 10.7 100V	OptiMOS™5 80V	OptiMOS™5 100V	OptiMOS™5 80V	OptiMOS™5 100V	Gen10.7 100V
R _{DSon} BiC	8.5mΩ	14.5mΩ	3.1mOhm	4mOhm	1.2mΩ	1.5mOhm	2.8mΩ

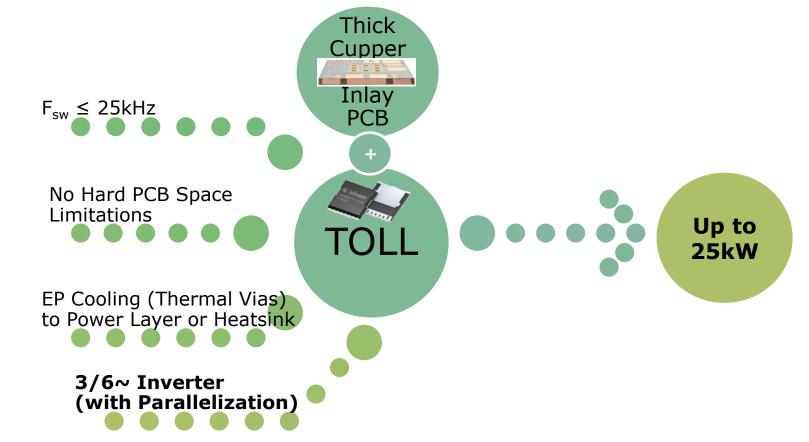

- > Suitable for standard FR4 PCBs
- > High Reliability during TCoB and IOL Tests
- Preliminary Information. Subject to change.

Limitations of Leadless SMD Packages System Requirements

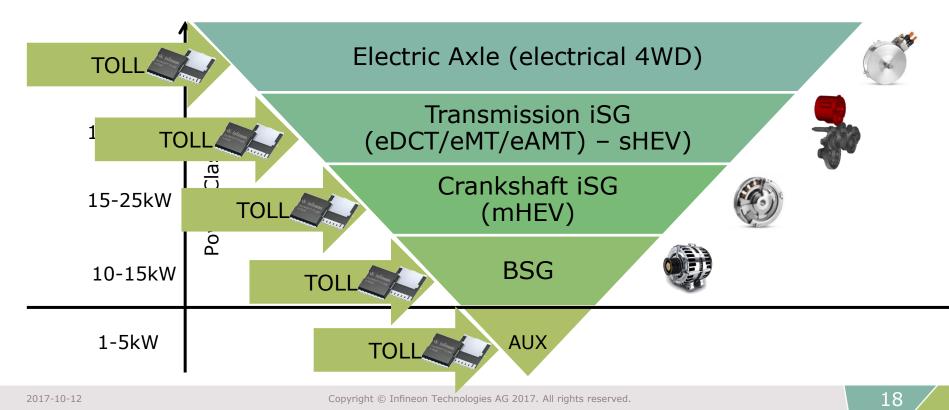



Copyright © Infineon Technologies AG 2017. All rights reserved.

Limitations of Leadless SMD Packages Increasing the Output Power with Thick Copper PCB



Limitations of Leadless SMD packages Increasing the Output Power with Thick Copper PCB



Leadless SMD MOSFETs High Power Inverters

> Electrification and Hybridization

Leadless SMD Packages Advantages

Assembly

- > Optical Inspection
- Standard Soldering Process (e.g. Reflow)

Quality

- > Fully AECQ qualified
- Proven IOL (Power Cycling) and TCoB (Temp Cycling) Reliability

Market 2nd Source Strategy Multiple, Footprint > Compatible Alternatives available **PCB** Standard FR4 **Multiple Supplier**

 Well Known Copper Technologies

Limitations of Leadless SMD Packages Disadvantages

PCB

- > Increased PCB Temperature
- > Layout Inflexibility
- High Thermal Stress on Solder Mask (->reliability)
- Only applicable for Copper Substrate

Parallel Switching Performance

- Parameter Variation
 - > Gate-Threshold Voltage,
 - > Breakdown Voltage

Cooling

- R_{thJunction-Ambient} limited by Package
- Thick Copper Layer or Inlay
- > Bottom Side Cooling

Power

 Limited by Bonding/Clipping (per device)

Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook

Modules

Switching

Reduced Stray

on Design

Σ

>

>

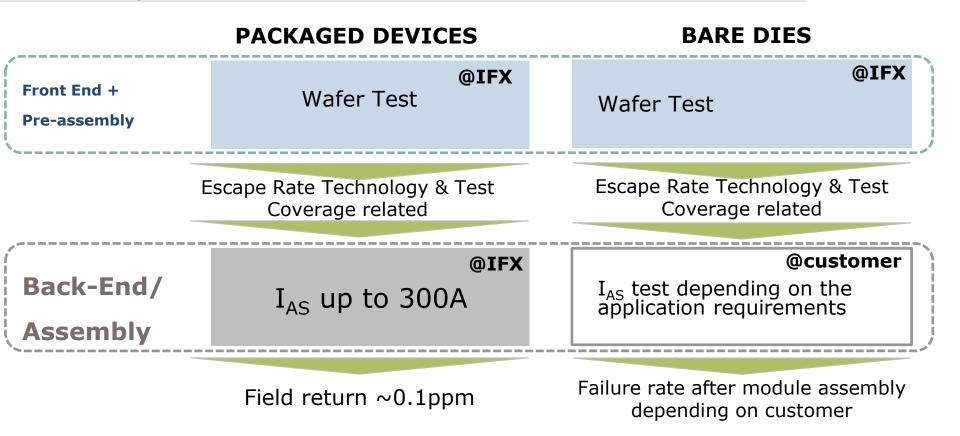
Bare Dies and MOSFET Modules Advantages

System Dimensions Power Customized Chip Size Most Flexible Design Adaptive to All Circumstances **Temperature & Cooling** > Applicable for Inductance depending **HOT Environments** (up to 175°C) **Customized Cooling** >

Approaches

>

Homogeneous


Power Loss Distribution

Bare Dies and MOSFET Modules Reliability: PPM Rates

Bare Dies and MOSFET Modules Disadvantages

Yield @ Customer

 Yield Loss after Assembly @ Customer

Testing

- Avalanche Current Testing at Customer Required
- Need of Additional Module Stress Tests (e.g. Power & Temp Cycling)

Handling

- > Thin Wafer Technology
- Very sensitive to Cracks
- Strongly depending on Customer's Experience

Assembly

Customer is Responsible for entire Back-End-of-Line Process

Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding

Innovative Packaging Concepts DirectFET2/TOLG/Top Side Cooling

	DirectFET2 (WDSON)	TOLG
	(Ling)	
Foot-Print	7x9	10x12mm
I-Package	88A	300A
Released	Gen10.7 100V	OptiMOS™5 80V
R _{DSon} BiC	2.8mΩ	1.2mΩ
	Dual Side	Bottom Side
PCB/Cooling	Bottom: FR4 Copper Top: Water Cooling	

Preliminary Information. Subject to change.

2017-10-12

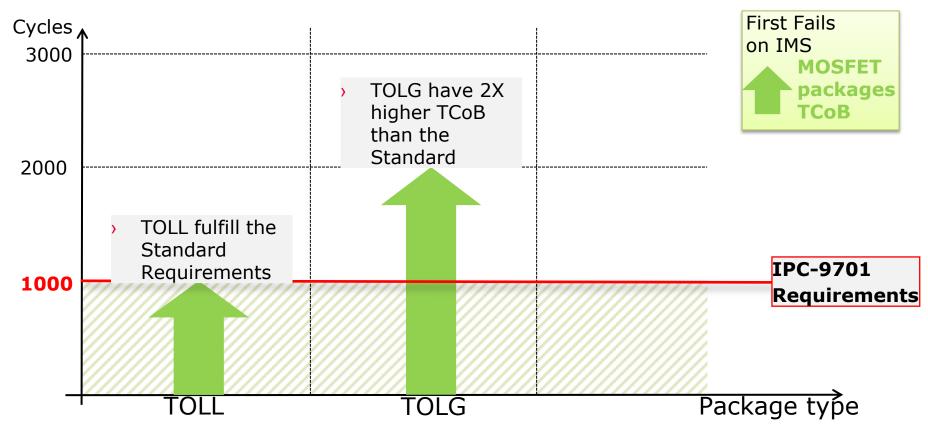
Innovative Packaging Concepts TOLG

	DirectFET2 (WDSON)	TOLG
	(Ling)	
Foot-Print	7x9	10x12mm
I-Package	88A	300A
Released	Gen10.7 100V	OptiMOS™5 80V
R _{DSon} BiC	2.8mΩ	1.2mΩ
	Dual Side	Bottom Side
PCB/Cooling	Bottom: FR4 Copper Top: Water Cooling	Bottom: FR4/Al-core IMS

Preliminary Information. Subject to change.

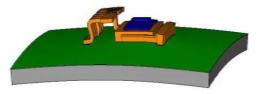
2017-10-12

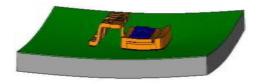
TOLG Properties of Al-based IMS and Consequences


- infineon
- Cu (based Material for the Leadframe of the MOSFET), Al and FR4 have different Coefficients of Thermal Expansion:

- The Mismatch between Cu and Al-Core IMS will lead to higher Stress on the Solder Material, and reduce the Robustness of the System during Thermal Cycles, which may lead to Cracks within the Solder Material
- → Failure Mode: always Solder Joint Fatigue at the Corner Pins @ Gate/Source
- → TOLL is appropriate for FR4 Boards and Cu-Core IMS

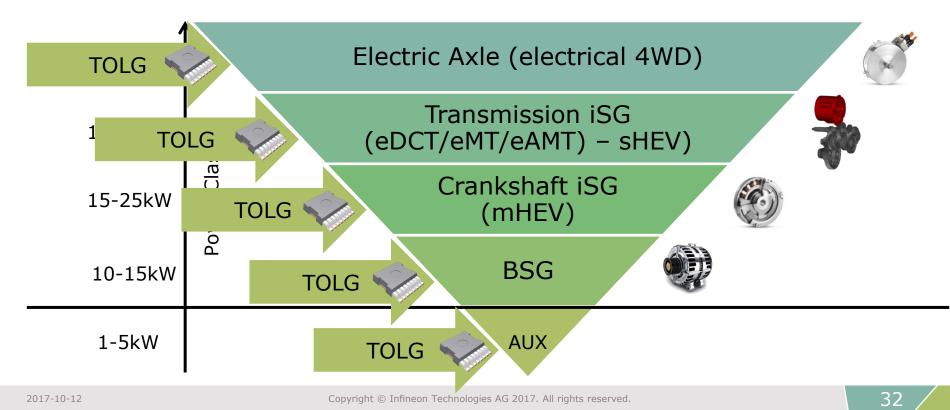
TCoB Performance of TOLL and TOLG on IMS (-40°C to 125°C):


TOLG TOLL with Gullwing Geometry



 Infineon investigated a Derivate of the TOLL (TOLL with Gullwing Geometry) to improve TCoB performance on Al-core IMS:

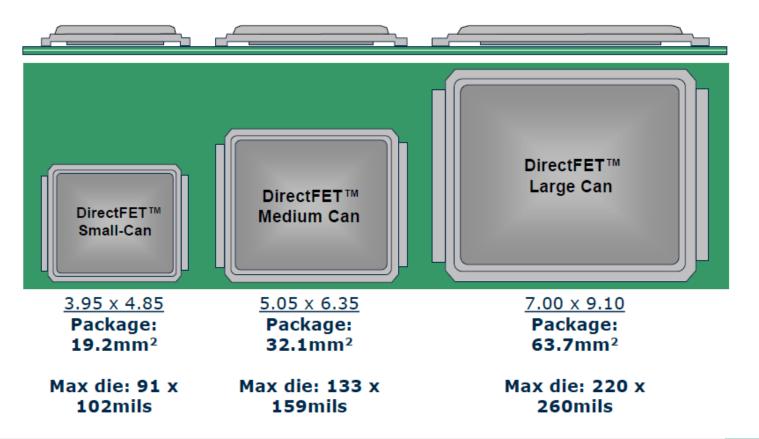
- > Results:
 - On IMS: the TOLG performs much better than the TOLL under same Conditions
 - Reason for better Performance is the Flexibility of the Gullwing Leads



TOLG High Power Inverters

> Electrification and Hybridization

Innovative Packaging Concepts DirectFET2


	DirectFET2 (WDSON)	TOLG
	(Linger	
Foot-Print	7x9mm	10x12mm
I-Package	88A	300A
Released	Gen10.7 100V	OptiMOS™5 80V
R _{DSon} BiC	2.8mΩ	1.2mΩ
	Dual Side	Bottom Side
PCB/Cooling	Bottom: FR4 Copper Top: Water Cooling	

Preliminary Information. Subject to change.

2017-10-12

Innovative Packaging Concepts DirectFET2

Innovative Packaging Concepts DirectFET2

- > Allowing Double Side Cooling
 - Top-Side: Heatsink / Water Cooling

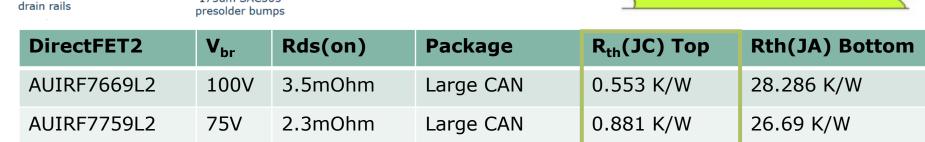
200um die

thickness

175um SAC305

- Bottom-Side: Thermal Vias to Power Cu Layer

MSL1 capable epoxy die


attach

64um

dimples on

Copyright © Infineon Technologies AG 2017. All rights reserved.

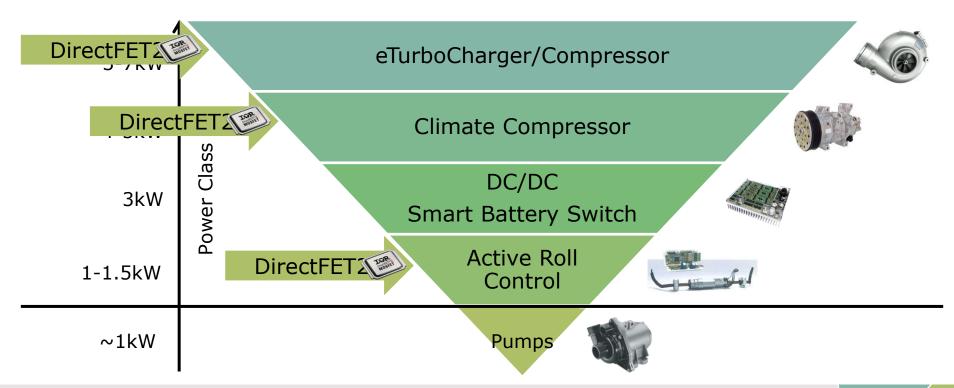
Drain

Cu leadframe, 250um

thick material

Heatsink/Water Cooling

PCB


Drain

Source

DirectFET2 Applications

Copyright © Infineon Technologies AG 2017. All rights reserved.

DirectFET2 Advantages

Switching

 Lowest Stray Inductance in Class due to missing Bond Wires

Quality

- Fully AECQ qualified
- Proven IOL (Power Cycling) and TCoB (Temp Cycling) Reliability

Cooling

- Double Side Cooling
- Very low Top Side
 R_{th} enables Cooling via
 CAN to Heatsink

PCB

- Standard FR4
- Reduced PCB Temperature

Limitations of DirectFET2 Disadvantages

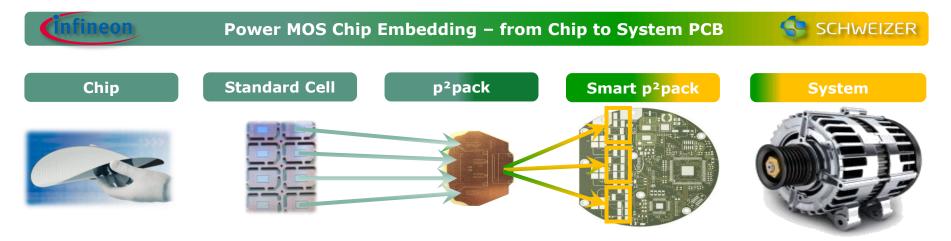
PCB & Assembly

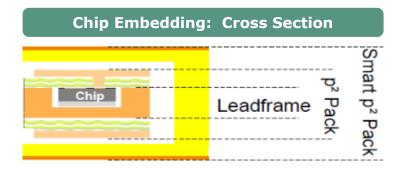
- Increased PCB Temperature >
- Layout Inflexibility >
- Deviations of Body's Height: > No Homogeneous Placement of Thin Thermal Adhesive

Parallel Switching Performance

- Parameter Variation
 - Gate-Threshold Voltage
 - Breakdown Voltage >

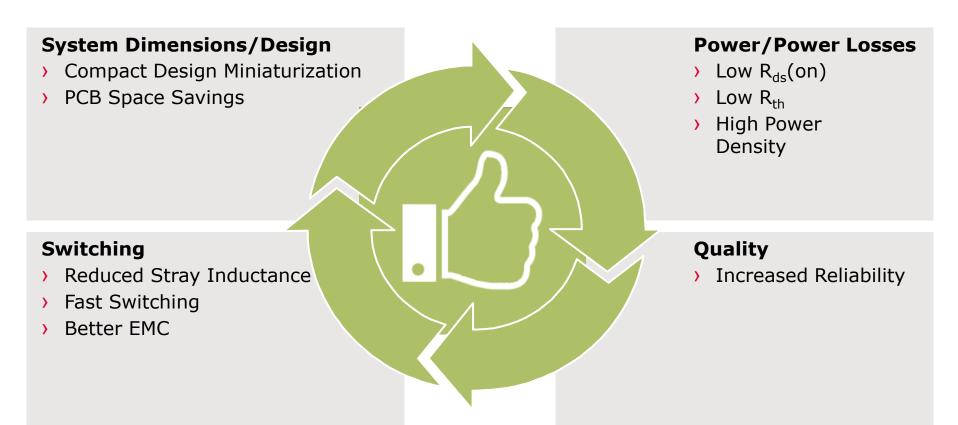
Market > Unique No Footprint > **Compatible Alternatives Power Cycling** Bottle Neck : 5 Bottom-Side Solder Bumps (High Thermal Stress)




Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook

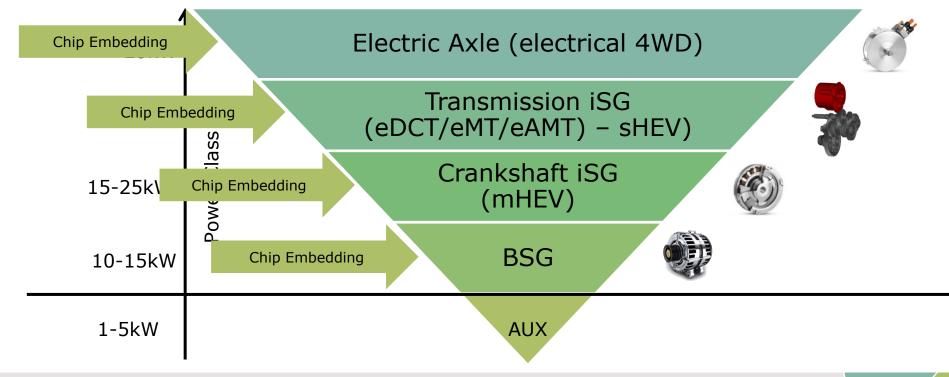
Chip Embedding Process Flow



Chip Embedding: Increasing System Performance

≻	Low Ohmic Conductivity	+++
\succ	Low Inductive Switching	+++
\succ	System Cooling	+++
\succ	System Miniaturization	+++
≻	System Assembly	+++

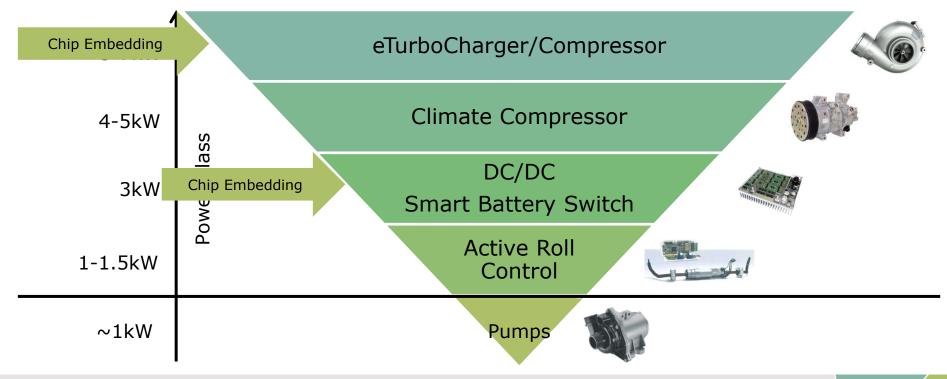
Chip Embedding Advantages



2017-10-12

Copyright © Infineon Technologies AG 2017. All rights reserved.

High Power Inverters µHybridization



42

2017-10-12

Copyright © Infineon Technologies AG 2017. All rights reserved.

High Power Inverters Auxiliary Drives

Power MOS Chip-Embedding Potential System Improvements & Savings

Ceramic Board or Power PCB + Save Connectors and Logic PCB = become only one PCB Enhance Interconnects Better thermal & electrical Save Cooling Performance Reduction of Chip Size and / or **Save Semiconductor Costs** Lower Voltage Class Faster Switching possible Save Passives **Save EMC Measures** EMC Shielding with Cu-Layers Power stages are already insulated Save Insulator Save Room/Space constrains Miniaturization - Less Space "Money in Hybrid Cars" DC Link close to power stages Save System Costs

➔ Optimizing System Performance & System Costs

Agenda

1	High Power Inverters
2	Leadless SMD Packages
3	Bare Dies and MOSFET Modules
4	Innovative Packaging Concepts
5	Chip Embedding
6	Summary and Outlook

	Air cooling (**)	External Water Cooling (***)
		TOLL/TOLG on IMS
		(105µmCu, 2mm Al)
RthJH [K/W]		2
R _{thJH} Improvement [%]		-
TJ,max [°C]		175
Ta,max [°C]		110
DT [K]		65
R"pck" [mOhm]		0,16
R _{″pck″} [%]		-
RDSon,max25%C [mOhm]		1,5
R _{DSon,max"25%C} Improvement [%]		-
Ls [nH]		2
L _s Improvement [%]		-
Switching losses		30%
Max current ratings RMS [A]		95
Current Improvement [%]		-
(*) Concept - based on Simulatio	n	Reference:

(**) Low Budget Cooling

	Air cooling (**)
	DCB
	Wedge bonded
	175µm Si
RthJH [K/W]	2
R _{thJH} Improvement [%]	0%
TJ,max [°C]	175
Ta,max [°C]	110
DT [K]	65
R"pck" [mOhm]	0,5
R _{"pck"} [%]	213%
RDSon,max25%C [mOhm]	1,84
R _{DSon,max"25%C} Improvement [%]	23%
Ls [nH]	5
L _s Improvement [%]	150%
Switching losses	40%
Max current ratings RMS [A]	84
Current Improvement [%]	-12%
(*) Concept based on Cimula	

(*) Concept - based on Simulation

(**) Low Budget Cooling

	Air cooling (**)		External Water Coolin
	DCB	DCB	TOLL/TOLG on IMS
	Wedge bonded	Wedge bonded	
	175µm Si	175µm Si	(105µmCu, 2mm Al)
RthJH [K/W]	2	1	
R _{thJH} Improvement [%]	0%	-50%	-
TJ,max [°C]	175	175	17
Ta,max [°C]	110	110	110
DT [K]	65	65	65
R"pck" [mOhm]	0,5	0,5	0,10
R _{"pck"} [%]	213%	213%	-
RDSon,max25%C [mOhm]	1,84	1,84	1,!
R _{DSon,max"25%C} Improvement [%]	23%	23%	-
Ls [nH]	5	5	
L _s Improvement [%]	150%	150%	-
Switching losses	40%	40%	30%
Max current ratings RMS [A]	84	117	99
Current Improvement [%]	-12%	23%	-
			Reference:

(*) Concept - based on Simulation

(**) Low Budget Cooling

	Air cooling (**)		External Water Cooling (***	
	DCB	DCB	DCB (*)	TOLL/TOLG on IMS
	Wedge bonded	Wedge bonded	SFS	
	175µm Si	175µm Si	70µm Si	(105µmCu, 2mm Al)
RthJH [K/W]	2	1	0,9	2
R _{thJH} Improvement [%]	0%	-50%	-55%	-
TJ,max [°C]	175	175	175	175
Ta,max [°C]	110	110	110	110
DT [K]	65	65	65	65
R"pck" [mOhm]	0,5	0,5	0,12	0,16
R _{"pck"} [%]	213%	213%	-25%	-
RDSon,max25%C [mOhm]	1,84	1,84	1,46	1,5
R _{DSon,max"25%C} Improvement [%]	23%	23%	-3%	-
Ls [nH]	5	5	2	2
L _s Improvement [%]	150%	150%	0%	-
Switching losses	40%	40%	30%	30%
Max current ratings RMS [A]	84	117	144	95
Current Improvement [%]	-12%	23%	52%	-
(*) Concept based on Simula				Reference:

(*) Concept - based on Simulation

(**) Low Budget Cooling

	Air cooling (**)	Air cooling (**)		External Water Cooling (***)		
	DCB	DCB	DCB (*)	TOLL/TOLG on IMS		
	Wedge bonded 175µm Si	Wedge bonded 175µm Si	SFS 70µm Si	(105µmCu, 2mm Al)	CE (*)	
RthJH [K/W]	2	1	0,9	2	1	
R _{thJH} Improvement [%]	0%	-50%	-55%	-	-50%	
TJ,max [°C]	175	175	175	175	175	
Ta,max [°C]	110	110	110	110	110	
DT [K]	65	65	65	65	65	
R"pck" [mOhm]	0,5	0,5	0,12	0,16	0,1	
R _{"pck"} [%]	213%	213%	-25%	-	-38%	
RDSon,max25%C [mOhm]	1,84	1,84	1,46	1,5	1,44	
R _{DSon,max"25%C} Improvement [%]	23%	23%	-3%	-	-4%	
Ls [nH]	5	5	2	2	"1"	
L _s Improvement [%]	150%	150%	0%	-	-50%	
Switching losses	40%	40%	30%	30%	20%	
Max current ratings RMS [A]	84	117	144	95	144	
Current Improvement [%]	-12%	23%	52%	-	52%	
(*) Concept based on Simula	Reference:					

(*) Concept - based on Simulation

(**) Low Budget Cooling

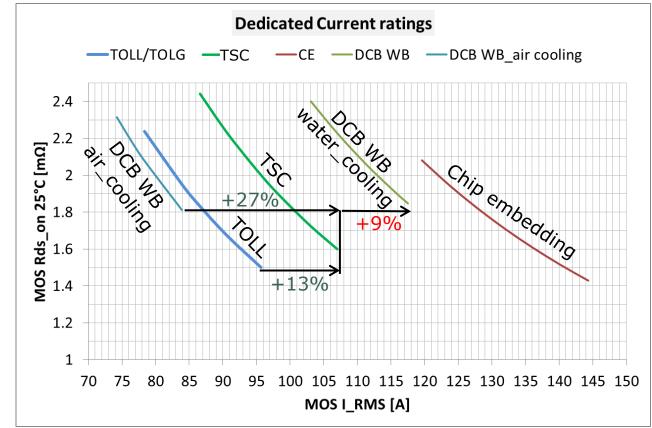
(***) High End Cooling

2017-10-12

	Air cooling (**)	External Water Cooling (***)				
	DCB	DCB	DCB (*)	TOLL/TOLG on IMS	/TOLG on IMS	
	Wedge bonded	Wedge bonded	SFS	(105µmCu, 2mm Al) CE (*)	Top Side Cooling (*)	
	175µm Si	175µm Si	70µm Si			
RthJH [K/W]	2	1	0,9	2	1	1,6
R _{thJH} Improvement [%]	0%	-50%	-55%	-	-50%	-20%
TJ,max [°C]	175	175	175	175	175	175
Ta,max [°C]	110	110	110	110	110	110
DT [K]	65	65	65	65	65	65
R"pck" [mOhm]	0,5	0,5	0,12	0,16	0,1	0,16
R _{″pck″} [%]	213%	213%	-25%	-	-38%	0%
RDSon,max25%C [mOhm]	1,84	1,84	1,46	1,5	1,44	1,5
R _{DSon,max"25%C} Improvement [%]	23%	23%	-3%	-	-4%	0%
Ls [nH]	5	5	2	2	"1"	2
L _s Improvement [%]	150%	150%	0%	-	-50%	0%
Switching losses	40%	40%	30%	30%	20%	30%
Max current ratings RMS [A]	84	117	144	95	144	107
Current Improvement [%]	-12%	23%	52%	-	52%	13%
(*) Concert based on Circula				Reference:		

(*) Concept - based on Simulation

(**) Low Budget Cooling


(***) High End Cooling

2017-10-12

Current Ratings Distribution According to Packages and Cooling Concept

100V MOS R_{ds}(on)@25C Vs Id_RMS (Application Verification)

Summary Comparison of MOSFET Solutions

TOLL TOLG	DirectFET2	Bare Die (Modules)	Chip Embedding (P ² PAK)
SFET5 ++	Gen10.7 +	SFET4 +	SFET5 ++
1.5mOhm (100V) 1.2mOhm (80V)	2.8mOhm (100V) 1.8mOhm (75V)	1.9mOhm (100V) 0.66mOhm (80V)	flexible
4x 6 MOSFETs = 24 2880mm ² 0	4x 6 MOSFETs = 24 1560mm ² +	30.24mm ² /die * 2 (in parallel) * 6 = 362.88mm ² (die space) + module	30mm ² / chip P ² PAK can be integrated space- neutral (embedding) ++
+	+	-	
300A	124A	272A	300A +
	TOLG SFET5 ++ 1.5mOhm (100V) 1.2mOhm (80V) 4x 6 MOSFETs = 24 2880mm ² 0 +	TOLG Gen10.7 ++ Gen10.7 1.5mOhm 2.8mOhm (100V) 1.5mOhm (80V) 1.8mOhm (75V) 1.2mOhm (80V) 4x 6 MOSFETs = 24 4x 6 MOSFETs = 24 1560mm² 0 + + + 300A 124A	TOLG (Modules) SFET5 Gen10.7 SFET4 ++ + 1.9mOhm (100V) 1.5mOhm 2.8mOhm (100V) 1.9mOhm (100V) (100V) 1.8mOhm (75V) 0.66mOhm (80V) 1.2mOhm (80V) 4x 6 MOSFETs = 30.24mm²/die * 2 4x 6 MOSFETs = 4x 6 MOSFETs = 30.24mm²/die * 2 24 1560mm² 362.88mm² (die 0 + - + + - 300A 124A 272A

Summary Comparison of MOSFET Solutions

	TOLL TOLG	DirectFET2	Bare Die (Modules)	Chip Embedding (P ² PAK)
Customization: differentiation to the competition	-	+	++	++
Layout flexibility	0	0	++	++
Handling	+	0	-	0
Portability from one gen to the next	++	0	-	++ (TIER1)

Part of your life. Part of tomorrow.

