High-Level Comparison of two new automotive networking protocols: Ethernet The automotive industry has seen massive growth of electronic control units (ECUs) in cars. These ECUs evolved from stand-alone units to intelligent nodes in networks using both proprietary protocols and industry-wide standards. Network architectures have brought down cost and increased reliability and perfor- mance. In the past the industry saw the development of data buses as in-car network standards. In the future the industry will need to expand the existing vehicle network protocols and adapt the standard networking architecture into cars. CHARACTERISTICS OF CAN AND CAN-FD #### **HIGH-LEVEL CAN FD FORMAT** with - SHARED BUS NODES are connected directly to one another via a dual wire line, suitable for medium bandwith use cases. - - **COST-EFFICIENT TECHNOLOGY** established set of standards and large Bus arbitration controlled by **FRAME** ecosystem **HEADERS** DATA CONSISTENCY SUPPORT Instant syntax check with subnet-wide notifications 1 GBIT/S HIGH LEVEL CHARACTERISTICS OF AUTOMOTIVE ETHERNET 100 MBIT/S or I GBIT/S point-to-point • Up to 1500 BYTES per frame including • full-duplex communication transport protocol overhead Bit rate during data phase CAN CONFIGURED to be greater than bit rate during arbitration phase **ENABLES** # than physical layer loop delay 010100111001010101 Bit length in data phase CAN BE SHORTER transmitter's error status KNOWLEDGE of message ### 100 MBIT/S LARGE ECO-SYSTEM CAN (FD) **CLASSICAL CAN:** 500 kbit/s CAN FD: 2 Mbit/s data phase **AUTOMOTIVE ETHERNET** 100 Mbit/s (Full-duplex) or 1 Gbit/s (Full-duplex) ## Bit rate CLASSICAL CAN:0 to 8 CAN FD: 0 to 64 (improved data cohesion) Frame payload [bytes] predictable latencies with Scheduled Traffic in TSN and Frame Preemption 42 TO 1500 AUTOSAR 4.2.1 has common CAN FD has **MESSAGE TIME** - Length of longest frame - Frame header (message priority) notion of time (global time sync) DEPENDS ON: - Bus utilization STAMPING subnet level) **DATA-DEPENDENT** WAKEUP SUPPORTED when selective wakeup **Temporal** Accuracy Latency AVB Ethernet has **TIME** SYNCHRONIZATION Seamless Redundancy in **Under preparation: Ingress** AUTOSAR 4.2.1 has common notion of time (global time sync) Maximum 2 MS OVER 7 HOPS (AVB Ethernet). Microsecond level, CAN FD format enables knowledge of transmitter's error status Instant frame syntax checking (Safety Node activation NODES CAN BE ACTIVATED presence of any traffic progress (802.1 CB) **Policing** transceivers used by bus activity AVB = Audio Video Bridging, TSN= Time Sensitive Networking All data used based on: Ethernet and CAN FD: Two protocols for next generation vehicles. November, 2014. General Motors. through a control line or through Are you interested in learning more about solutions to your real world problems with Advanced E/E Architecture, Safety Management and Data Processing? Join us at the 3RD INTERNATIONAL CONFERENCE BUS SYSTEMS AND ETHERNET 2015. **Automotive BUS Systems Ethernet**