

High-Level Comparison of two new automotive networking protocols: Ethernet The automotive industry has seen massive growth of electronic control units (ECUs) in

cars. These ECUs evolved from stand-alone units to intelligent nodes in networks using both proprietary protocols and industry-wide standards. Network architectures have brought down cost and increased reliability and perfor-

mance. In the past the industry saw the development of data buses as in-car network standards. In the future the industry will need to expand the existing vehicle network protocols and adapt the standard networking architecture into cars. CHARACTERISTICS OF CAN AND CAN-FD

HIGH-LEVEL CAN FD FORMAT

with

- SHARED BUS NODES are connected directly to one another via a dual wire line, suitable for medium bandwith use cases.
- - **COST-EFFICIENT TECHNOLOGY** established set of standards and large

Bus arbitration controlled by **FRAME**

ecosystem

HEADERS

DATA CONSISTENCY SUPPORT

Instant syntax check with

subnet-wide notifications

1 GBIT/S

HIGH LEVEL CHARACTERISTICS OF AUTOMOTIVE ETHERNET

100 MBIT/S or I GBIT/S point-to-point •

Up to 1500 BYTES per frame including •

full-duplex communication

transport protocol overhead

Bit rate during data phase CAN CONFIGURED to be greater than bit rate

during arbitration phase

ENABLES

than physical layer loop delay

010100111001010101

Bit length in data phase CAN BE SHORTER

transmitter's error status

KNOWLEDGE

of

message

100 MBIT/S

LARGE ECO-SYSTEM

CAN (FD)

CLASSICAL CAN: 500 kbit/s

CAN FD: 2 Mbit/s data phase

AUTOMOTIVE ETHERNET

100 Mbit/s (Full-duplex) or

1 Gbit/s (Full-duplex)

Bit rate

CLASSICAL CAN:0 to 8 CAN FD: 0 to 64 (improved data cohesion) Frame payload

[bytes]

predictable latencies with Scheduled Traffic in TSN and

Frame Preemption

42 TO 1500

AUTOSAR 4.2.1 has common

CAN FD has **MESSAGE TIME**

- Length of longest frame

- Frame header (message priority)

notion of time (global time sync)

DEPENDS ON:

- Bus utilization

STAMPING

subnet level)

DATA-DEPENDENT

WAKEUP SUPPORTED

when selective wakeup

Temporal Accuracy

Latency

AVB Ethernet has **TIME** SYNCHRONIZATION Seamless Redundancy in

Under preparation: Ingress

AUTOSAR 4.2.1 has common

notion of time (global time sync)

Maximum 2 MS OVER 7 HOPS (

AVB Ethernet). Microsecond level,

CAN FD format enables knowledge of transmitter's error status

Instant frame syntax checking (

Safety

Node activation

NODES CAN BE ACTIVATED

presence of any traffic

progress (802.1 CB)

Policing

transceivers used by bus activity AVB = Audio Video Bridging, TSN= Time Sensitive Networking

All data used based on: Ethernet and CAN FD: Two protocols for next generation vehicles. November, 2014. General Motors.

through a control line or through

Are you interested in learning more about solutions to your real world

problems with Advanced E/E Architecture, Safety Management and Data Processing? Join us at the 3RD INTERNATIONAL CONFERENCE BUS SYSTEMS AND ETHERNET 2015.

Automotive BUS Systems Ethernet